The Internet Assigned Numbers Authority (IANA) has reserved the following three blocks of the IP address space for private internets:
10.0.0.0 - 10.255.255.255 (10/8 prefix)
172.16.0.0 - 172.31.255.255 (172.16/12 prefix)
192.168.0.0 - 192.168.255.255 (192.168/16 prefix)
We will refer to the first block as "24-bit block", the second as "20-bit block", and to the third as "16-bit" block. Note that (in pre-CIDR notation) the first block is nothing but a single class A network number, while the second block is a set of 16 contiguous class B network numbers, and third block is a set of 256 contiguous class C network numbers.
An enterprise that decides to use IP addresses out of the address space defined in this document can do so without any coordination with IANA or an Internet registry. The address space can thus be used by many enterprises. Addresses within this private address space will only be unique within the enterprise, or the set of enterprises, which choose to cooperate over this space so they may communicate with each other in their own private internet.
As before, any enterprise that needs globally unique address space is required to obtain such addresses from an Internet registry. An enterprise that requests IP addresses for its external connectivity will never be assigned addresses from the blocks defined above.
In order to use private address space, an enterprise needs to determine which hosts do not need to have network layer connectivity outside the enterprise in the foreseeable future and thus could be classified as private. Such hosts will use the private address space defined above. Private hosts can communicate with all other hosts inside the enterprise, both public and private. However, they cannot have IP connectivity to any host outside of the enterprise. While not having external (outside of the enterprise) IP connectivity private hosts can still have access to external services via mediating gateways (e.g., application layer gateways).
All other hosts will be public and will use globally unique address space assigned by an Internet Registry. Public hosts can communicate with other hosts inside the enterprise both public and private and can have IP connectivity to public hosts outside the enterprise. Public hosts do not have connectivity to private hosts of other enterprises.
Moving a host from private to public or vice versa involves a change of IP address, changes to the appropriate DNS entries, and changes to configuration files on other hosts that reference the host by IP address.
Because private addresses have no global meaning, routing information about private networks shall not be propagated on inter-enterprise links, and packets with private source or destination addresses should not be forwarded across such links. Routers in networks not using private address space, especially those of Internet service providers, are expected to be configured to reject (filter out) routing information about private networks. If such a router receives such information the rejection shall not be treated as a routing protocol error.
Indirect references to such addresses should be contained within the enterprise. Prominent examples of such references are DNS Resource Records and other information referring to internal private addresses. In particular, Internet service providers should take measures to prevent such leakage.
Please visit or advertiser at the banner below:
Advantages and Disadvantages of Using Private Address Space
The obvious advantage of using private address space for the Internet at large is to conserve the globally unique address space by not using it where global uniqueness is not required.
Enterprises themselves also enjoy a number of benefits from their usage of private address space: They gain a lot of flexibility in network design by having more address space at their disposal than they could obtain from the globally unique pool. This enables operationally and administratively convenient addressing schemes as well as easier growth paths.
For a variety of reasons the Internet has already encountered situations where an enterprise that has not been connected to the Internet had used IP address space for its hosts without getting this space assigned from the IANA. In some cases this address space had been already assigned to other enterprises. If such an enterprise would later connects to the Internet, this could potentially create very serious problems, as IP routing cannot provide correct operations in presence of ambiguous addressing. Although in principle Internet Service Providers should guard against such mistakes through the use of route filters, this does not always happen in practice. Using private address space provides a safe choice for such enterprises, avoiding clashes once outside connectivity is needed.
A major drawback to the use of private address space is that it may actually reduce an enterprise's flexibility to access the Internet. Once one commits to using a private address, one is committing to renumber part or all of an enterprise, should one decide to provide IP connectivity between that part (or all of the enterprise) and the Internet. Usually the cost of renumbering can be measured by counting the number of hosts that have to transition from private to public. As was discussed earlier, however, even if a network uses globally unique addresses, it may still have to renumber in order to acquire Internet-wide IP connectivity.
Another drawback to the use of private address space is that it may require renumbering when merging several private internets into a single private internet. If we review the examples we list in Section 2, we note that companies tend to merge. If such companies prior to the merge maintained their uncoordinated internets using private address space, then if after the merge these private internets would be combined into a single private internet, some addresses within the combined private internet may not be unique. As a result, hosts with these addresses would need to be renumbered.
The cost of renumbering may well be mitigated by development and deployment of tools that facilitate renumbering (e.g. Dynamic Host Configuration Protocol (DHCP)). When deciding whether to use private addresses, we recommend inquiring of computer and software vendors about availability of such tools. A separate IETF effort (PIER Working Group) is pursuing full documentation of the requirements and procedures for renumbering.
An Excerpt from RFC 1918
February 1996